CS/RBE 549 COMPUTER VISION
FAaLL 2012
FINAL PROJECT REPORT

Show Us What You Know, Robot:

Autonomous Identification and Indication of Plastic Automata Existence

Group 7

Member Signature Contribution (%)

Russell Toris

David Kent

Adrian Boteanu

Grading: Approach
Justification
Testing & Examples
Documentation
Presentation
Difficulty
Extra
Total

/25
/20
/25
/15
/10
/5
/10
/100

Executive Summary

The goal of this project was to detect a toy computer using a variety of computer vision
techniques. Our team decided to implement a full object recognition pipeline, while minimizing the
use of predefined functions. The objectives of the project were to detect the target object, to use
an approach generalizable to any object, to perform this recognition in real-time, and to present
the detection and recognition data in such a way that it could be useful for robotic applications.

In keeping with the robotics-focused objective of the project, the group primarily used a Kinect
RGB camera for object detection. The Kinect was mounted on a PR2 robot, which allowed for
easy control of the camera position as well as transmission of the object detection results to the
robot itself. The project was implemented within the Robot Operating System (ROS), and the
OpenCV code base was used for lower level computer vision functionality.

The overarching approach of the project was to use feature-based classification to recognize
objects. This first required segmentation of the original Kinect RGB image to detect potential
objects. This image segmentation was implemented using noise removal, edge detection, morpho-
logical operations, and size-and-shape filtered closed contour detection. After individual objects
were detected and segmented, the algorithm performs a custom feature extraction method on each
image segment to create a feature vector. Each feature vector is used as input to a Naive Bayes
Classifier. The classifier was trained on image segments of a set of seven distinct object classes,
including the toy computer.

With object recognition implemented, a few adjustments had to be made to the pipeline to
improve real-time performance. False positive identification of the target object made any physical
robotic interaction hazardous, so the results of the classifier were filtered using a custom smoothing
algorithm. The smoothing algorithm removed false positive measurements and only confirmed the
existence of the target object after a set time interval.

Once the object was reliably detected in real-time with the implementation of the smoothing
algorithm, the group focused on using this information for robotics. The PR2 robot is commonly
used in grasping research, and we took our inspiration from this. Using the Kinect’s depth data,
the center point of the detected and recognized object could be mapped onto three-dimensional
space. Using coordinate transformations implemented for the PR2 robot in ROS, this 3D point was
translated into a position relative to the base coordinate frame of the robot. Information such as
this allows robots to interact with physical objects, and the group demonstrated this functionality
by programming the robot to point at the target object once it was detected and recognized. This
functionality could theoretically be extended to grasping and object manipulation in future work.

Overall, the implemented pipeline was a success. The robot could consistently detect the
target object in real-time at arbitrary orientations, and the information could be used by the
robot to physically locate the object in 3D space. There is, however, further work on the system
could improve its functionality. For example, the segmentation algorithm does not do as well in
heavily cluttered environments, and parts of the feature vector are dependent on lighting conditions
consistent with that of the training data. Improving these issues could generalize the system to work
under more conditions, but as it stands now the system completed all of our original objectives.

Contents

(1 _Introduction|

[1.1 Objectives| o e e e

2.1 Image Segmentation| Lo

2.3.1 Traning|
[2.3.2 Multi-Object Recognition| o oo

2.4 Smoothing & False Positive Reduction|

2.5 3D Space Transformation and Robot Pointing|

[3 Implementation, Code Documentation, & Release]|

B.1 Source Codel. e
3.1.1 Image Processing|

4 Conclusions & Future Work]

ii

10
11
12
12

12

1 Introduction

For our final Computer Vision project, our team was given the task of detecting a small toy
computer as depicted in Figure [I] After discussing potential ways of tackling such a problem and
noting the numerous computer vision techniques used to detect objects, we decided to base our
approach around classification.

Figure 1: The toy computer.

Although there are many out-of-the-box solutions that could be used to aid us in a vision based
classification system, we wanted to instead use lower level processing techniques to build a more
robust and original pipeline. The pipeline, which is discussed in detail in the following section,
consists of a custom image segmentation algorithm and feature extraction. By doing so, we would
be able to customize exact parameters to help us more accurately detect target objects.

1.1 Objectives

Our project consisted of an overarching goal of accurately detecting the toy computer using the
techniques mentioned above. To challenge ourselves to build a robust system, we decided to take
this goal one step further. We began by noting that computer vision is an area of research that
encompasses various areas of the sciences and engineering. Therefore, we wanted to build a system
that would not only meet the main recognition objective, but, more importantly, we wanted to
make practical use of this data. Thus, the decision was made to use the PR2 robot (seen in Figure
3.

Our end objective was to use the robot’s Kinect RGB camera to accurately, confidently, and
efficiently detect the image using only 2D image data. Once we had made a confident match, we
would then use the Kinect’s features to pinpoint a probable location of the object in 3D space.
By converting this point into the robot’s coordinate frame, we can then have the robot physically
indicate the location of the object. This physical demo was the ultimate end goal of the project.

In hopes of releasing our code, we decided to make use of the widely used OpenCV code base.
Furthermore, all of our code was implemented to be used within ROS (Robot Operating System).
Details of the code, related documentation, and its release can be found later in this document.
We begin by detailing our approach.

Figure 2: The PR2 robot.

Segmentation

Feature
Extraction

Classification

Conversion
to 3d

Figure 3: The object recognition pipeline.

2 Approach

As stated above, the main objective of the project was to implement an effective object recognition
pipeline for use in real-time. An overview of our pipeline can be seen in Figure Our approach
began with image segmentation to divide the original image into smaller images of each potential
object for separate processing. Features are then extracted from each image segment to create a
feature vector. This vector is used as input for a classifier, which determines what class of object
the image segment belongs to. To improve real-time performance, the output of the classifier is run
through a smoothing algorithm to remove false positive classification of the target object. Finally,
the detected target object is converted into a point in three-dimensional space, which can be used
by the robot to physically locate the object. Each step of the pipeline is explained in detail below.

Original Convert to L, Blur Ll Erode
Image Grayscale

Canny e—| Dilate la—] Canny

l

Detect Bounding Filter Segment
! !
Contours Boxes Boxes Image

Figure 4: The segmentation pipeline.

2.1 Image Segmentation

Although a variety of image segmentation techniques exist, one of the goals of our project was
to implement as much of the object detection pipeline as possible. As such, we implemented our
own segmentation algorithm. The algorithm consists of three major steps: noise removal, edge
detection, and closed contour detection. The detailed pipeline can be seen in Figure

The segmentation pipeline begins with standard noise removal by converting the original Kinect
RGB image to grayscale, applying a Gaussian blur, and eroding the image with an ellipse structuring
element. With most of the noise removed, the algorithm then detects edge pixels using the Canny
edge operator [I]. This creates a binarized image showing edge and non-edge pixels that divides
the object into sections of closed contours around each object’s detailed sections, as seen in Figure
Bl

While clearly defined edges result in a connected set of edge pixels, some edges still have some
gaps. These gaps are filled in with a dilate morphology operator, using the same structuring element
as the erode morphology operator executed earlier in the pipeline. This dilation has the added effect
of restoring the objects to their original size, since the objects’ outer edges were diminished in the
erosion. With the edges complete and the objects restored to their correct size, the algorithm runs
the Canny edge operator a second time. This combines all of the smaller closed-contour sections of
each object into a single outline contour for the object, which can be seen in Figure

The final section of the segmentation pipeline involves detecting closed contours and fitting
bounding boxes to them. The algorithm next detects closed contours using an OpenCV function.
OpenCV also includes a function which fits a minimum area rotated bounding box to a contour.
Using these two functions, all closed contours in the image are detected and bounded with rotated
rectangles. Depending on how cluttered the image is, this can result in many closed contours and
bounding boxes, so we filtered the bounding boxes by size to remove any particularly large or small
contours, and by aspect ratio to remove any long, skinny contours. The results of the contour
detection and bounding box filtering can be seen in Figure [6] which contains only bounding boxes
of a size and shape consistent with the toy computer. These bounding boxes are then overlayed
onto the original Kinect RGB image, and a separate image segment is extracted for each bounding
box, completing the image segmentation process.

Figure 5: Left: Result of the first execution of the Canny edge operator. Right: Result of the
second execution of the Canny edge operator.

Figure 6: The filtered output of bounded contour detection.

2.2 Feature Vector Extraction

We processed each image segment separately to extract a feature vector for later use in classification.
We took into consideration features that use both color and geometric information, all normalized
on a real scale from 0 to 1. For color, we used the RBG channels. For geometry, we considered
three categories: results from a Hough transform, a count of SIFT features, and how similar the
closed contours in the image segment were when compared to a reference rectangle.

The first three features we used were the average red, green, and blue colors of the entire image
segment. For each color, we took the arithmetic mean of each pixel intensity in the image segment
and then normalized the result by 255, the maximum value per channel. These three features helped
us to distinguish amongst objects of different color; however, this was not enough information to
rely on alone. We also note that these features are invariant to scale, rotation, translation, and
skew.

Next, we looked at geometric features using line segments. Before applying the Hough transform
to identify these line segments, we applied a blur mask, followed by the same Canny edge operator
mask used throughout the project. We created two features from the resulting lines: the total
number of line segments in the current image segment and the average line segment length. Both
feature values were limited by a predefined maximum (150 pixels and 25 pixels respectively) and

[R| G| B| # Lines | Avg. Line Len. | # SIFT | Rectangle % |

Figure 7: The Feature Vector used for Classification.

then normalized by the same respective values. By using the Hough transform to find line segments,
we created a feature that can help to describe aspects of the objects geometry. For example, a
circular object like the turtle produced a large number of small line segments on the outline while
the toy computer had a small number of longer segments corresponding to the rectangle edges.
These features are invariant to rotation and translation.

We next used the number of SIFT features as a measure of the object’s complexity. We did not
use any matching here to avoid going through the computationally intensive process of matching
the features to a reference image. Furthermore, matching features would have required analyzing
multiple images of the rotated object and choosing the best image. In the case of our main target,
the toy computer, there were numerous angles from which reference images would have to be
compared to, since the object was not symmetric. Nevertheless, the number of features returned
by the SIFT algorithm on each segmented image gave us a measure of the objects’ complexity
that is invariant to rotation, scale, and translation. To use in the feature vector, we limited and
normalized the number of SIFT key points found by a predefined maximum (20).

Furthermore, since the shape of the toy computer contains, from any perspective, a large number
of rectangles relative to the total number of contours in the image (the shape of the screen, the
keyboard keys, parts of the sides, the bottom, etc.), we computed a feature which measured how
many closed contours in the image are rectangular. First, we passed the image segment through
our custom image segmentation algorithm described in the previous section to gather contours.
Using a function included in OpenCV, we compared each of the resulting contours with a reference
rectangle with the aspect ratio of 5:7. This function uses seven Hu moments[4] for comparing shape.
Hu moments are invariant to translation, scale, and rotation. For each contour that matched the
reference rectangle, we incremented a counter. After all contours were considered, we divided the
result by the number of contours to normalize the value.

The resulting feature vector, shown in Figure [7, had rotationally, translationally, and scale
invariant elements. Also, the geometric features were effectively scale invariant within a reasonable
interval. This vector could then be used for classification.

2.3 Classification

With ability to segment an image into probable objects and obtain seven dimensional feature vectors
describing each image segment, we were now able to attempt to classify each of the segmented
objects. To do so, we needed to decide on two important factors: the classification method and the
set of training data.

After discussing the pros and cons of various techniques such as Gaussian Mixture Models
(GMM) or Support Vector Machines (SVM), we decided to use a fairly simplistic, yet powerful,
classifier: the Naive Bayes Classifier[2, 5] which was provided as part of OpenCV. In short, this
model makes use of the widely known Bayes Theorem (P(A|B) = %) to find the most
likely classification for a given feature vector. That is, for a set of classifications C' and our seven
numerical features Fi,..., F7, we look for the classification C; that maximizes the conditional
probability P(C;|Fh, ..., Fr).

Toy Computer Pens

Squishy Robot Squishy Turtle

Toy Cylon Desk Wire-Hole Cover

Table 1: The 7 classification classes and an example associated segmented image.

What makes this model efficient to use is its assumption of independence amongst the features
in our feature vector. This is the key point in the Naive Bayes model. We note that although this
is not necessarily true with the features of our image (as they rarely are in any feature vector), in
practice this is a valid assumption. This is further justified by the efficiency of the overall pipeline
and the accuracy performance of the model discussed in later sections.

2.3.1 Training

As with any classifier, we started by providing a set of training data. To make the approach of our
pipeline more robust and generic, we decided to not make our classifier binary; that is, we did not
simply want to train on a set of positive images (i.e., the toy computer) and a set of negative images
(i.e., anything else in the scene). We choose to instead train the classifier to recognize seven object
classes. The seven classes as well as an example image produced from our segmentation algorithm
are given in Table

To train our classifier, we began by taking various images of the objects at various positions and
angles using the robot’s Kinect camera. We then fed the images into our segmentation algorithm
to ultimately produce 231 segmented training images (36 computer samples, 39 turtle samples, 18
robot samples, 19 toy Cylon samples, 35 pens samples, 54 desk wire-hole cover samples, and 30 other
samples). We labeled these outputs by hand such that we could then feed them into our feature
extraction method, which was finally put into the classifier as a pair between the classification and
the corresponding feature vector. Furthermore, since training data was given of our target object at
various orientations, we could correctly classify the object regardless of orientation. This is shown
in a video referred to later in this report.

Figure 8: Left: The resulting segmented objects. Right: The results of the classifier for each of
the segmented objects found in the image.

2.3.2 Multi-Object Recognition

As a result of above approach, we could now not only attempt to detect the target object, but we
can also label various other objects as well. At this point in our pipeline, we could now take an
image from the robot’s Kinect, segment the image into a set of possible objects, run each segmented
object through the feature extraction method to get its corresponding seven-dimensional feature
vector, run each feature vector through the classifier, and label the results on the original image.
The output of this process is depicted in Figure 8 For a better example of this procedure, please
refer to the demo video located at https://www.youtube.com/watch?v=0RFO1Fgczsk.

To give a rough estimate of the classifier’s performance, we looked at the percentage of correctly
classified training images and false positive classifications on the entire training set when run
through the final classifier. We note that a more accurate statistic would be on a set of unseen
training data; however, the decision was made to include all sample images as training data to
improve the accuracy of the final, live system. The results showed an accuracy of 83.33% for
correct classifications, and a false positive rate of 1.54%. While it is impractical to expect a perfect
classifier, we make additional steps to make a more confident classification further down the pipeline
by smoothing the classification results.

2.4 Smoothing & False Positive Reduction

As previously mentioned, classification will not always provide the correct solution. This problem
can be viewed as two separate issues: failure to detect the toy computer when it is in the scene, and
false positive classification. The latter is largely a problem when attempting to classify objects that
the classifier has never seen before. To overcome these two problems we introduced a smoothing
function to the pipeline.

The algorithm, presented in Algorithm [I] is run after each iteration of the recognition pipeline.
That is, it assumes it will be running in real-time. Before beginning, it initializes a set P which is
indexed by {z, y} coordinates (representing the center location of a segmented image) and a counter
c. During each iteration of the recognition pipeline, it takes the set of all segmented images that
were classified as the target object. For each one of these segmented images, it checks to see if their
location is already contained in the set P (within some distance threshold €). If it is, the algorithm
increments that location’s counter. This value is maxed out by Q (set to 20 in our setup) which
prevents the smoothing algorithm from keeping a point in the set for longer than approximately
one second. After incrementing these counts, the algorithm iterates through each point in the set

https://www.youtube.com/watch?v=ORF0lFgczsk

Algorithm 1 Smoothing classifications over a set time period.

Require: P = empty set of {z,y} — ¢ pairings

1: for all s; € Target Classified Segmented Image Center Pixel Locations do
2 if s; € P within some ¢ then

3 P(si).c = min(p;.c+ 1,Q)

4: else

5: P(Si).c —1

6: end if

7: end for

8: for all p; € P not visited do

9: p;.c = max(p;.c —2,0)

10: end for

11: f — p; € P with max count ¢
12: if f.c > @ then

13: return f

14: else

15: return null

16: end if

P that was not recently visited. For each of these points has their count decremented by 2 (note
that we prevent this count from becoming negative). Finally, the updated set P is searched for the
location with the highest count. If this count is above some threshold ® (set to 5 in our setup),
the algorithm returns this location as the most confident location of the object. If no point meets
this criteria, it simply returns no object location.

The result of this algorithm becomes immediately apparent in a real-time system. Without the
smoothing in place, we frequently observe faults such as losing the object when it is not detected
for a few frames even though we have observed its location for multiple prior frames, or displaying
false positives when the misclassified object has only been incorrectly classified for a few frames at
a time, but not over a longer time period. The output of this process is depicted in Figure[9] For a
better example of this procedure and proof of its effectiveness in real-time systems, please refer to
the demo video located at https://www.youtube.com/watch?v=0Gw8YbK4WMw. Furthermore, this
video exemplifies the robustness of the pipeline thus-far as one of our group members arbitrarily
rearranges the scene and as the camera changes angles.

2.5 3D Space Transformation and Robot Pointing

With this new smoothed output from our pipeline, we were now able to correctly locate the object
confidently while ignoring the vast majority of false positives. As previously mentioned, this is
more clearly shown in the example videos referenced in this video.

At this point, we were confident enough with our recognition of the object to begin passing
information about the object back to the robot. Since our end goal was to have the robot point its
end effector at the target object, we first would need to locate the object in 3D space. Capabilities
of the robot’s Kinect helped with this process. By matching up the resulting 3D point cloud to the
Kinect’s RGB data, we could take the 2D pixel location of the center of the object found in our
object recognition pipeline up to this point and find its depth away from the Kinect. Furthermore,

https://www.youtube.com/watch?v=0Gw8YbK4WMw

Figure 9: Top: The output of the smoothing function after confidently finding a match (outlined
in red). Bottom-Left: A misclassified object (outlined in blue) found by the classifier. Bottom-
Right: The smoothed output that successfully removes the brief false-positive.

since the PR2 was pre-calibrated to know the location of the Kinect relative to its own coordinate
frame, an easy calculation could be made to convert the objects location into the robot’s coordinate
frame. We therefore could now track the object in 3D space. This is depicted in Figure [I0]

Finally, we could query the robot’s inverse kinematics services to move the robot’s end effector.
The goal position was set to one centimeter away from the object to prevent collission. To stop
repetition of the point action, we had the robot re-point to the object if the object had moved at
least a few centimeters. An example of the final pointing action is depicted in Figure For a
better example of this procedure, please refer to the demo video located at https://www.youtube.
com/watch?v=35rbeElc-D4.

3 Implementation, Code Documentation, & Release

In addition to providing the raw source code, we also include a brief, high-level overview of the
code-base, as well as information on where documentation, source code, and distribution packages
can be found.

3.1 Source Code

In an effort to give back to the ROS community during this project, source code has been released
under the Robot Autonomy & Interactive Learning (RAIL) lab at WPI (a lab to which all three
group members belong). Source code can be found at the following location: https://github.
com/WPI-RAIL/rail_cv_project.

https://www.youtube.com/watch?v=35rbeE1c-D4
https://www.youtube.com/watch?v=35rbeE1c-D4
https://github.com/WPI-RAIL/rail_cv_project
https://github.com/WPI-RAIL/rail_cv_project

Figure 10: Left: The smoothed output from our pipeline. Right: A 3D visualization of the robot
(using the RVIZ program included with ROS) with a vector drawn to display the location of the
object in 3D space.

Figure 11: Top-Left: The point action as seen by the 3D visualizer. Bottom-Left: The point
action as seen by the robot’s Kinect. Right: The point action as seen by the robot’s side.

In addition to the various ROS build files, the implementation for this project consists of four
main files: processor.cpp, robot.cpp, and their associated header files.

3.1.1 Image Processing

The main object recognition pipeline is fully implemented in processor.cpp. It’s header file not
only contains the function and class declarations used in processor.cpp, but also the definitions
of all constants and parameters (e.g., Canny kernel size, blur factors, etc.) used throughout the
project.

Once compiled, the processor can be used in three different modes: gathering training data,
running the accuracy test, or running the full pipeline. A prompt is displayed in the terminal at
runtime to determine which mode to run.

When gathering training data, the process grabs a frame from the Kinect’s RBG camera, runs
the image through the segmentation algorithm, and saves all of the resulting segmented images.
These images can then be labeled and used as training data for the classifier. Once one iteration
has completed, a prompt is displayed asking if the user would like to continue or if they are finished.
This allows users to rearrange the scene in order to easily gather more unique training data.

10

In the second mode, the program can be used to run an accuracy test of the classifier. Here, the
program loads all training data, trains the classifier, and runs the training data back through the
classifier. The percentage of correctly classified computer images and the number of false positives
are outputted.

In the third mode, the full object recognition pipeline is run in real-time. It begins by setting
up communication to ROS and subscribing to the robot’s Kinect. Once this is made, the classifier
is trained. Upon the arrival of each new image from the Kinect, the image is segmented; each
segmented image is run through the classifier. For each of the segments classified as the target
object, we run them through the smoothing function. We take the output (if any) from that
function as the location of our object. As this is running, the following images are constantly
streamed to the user’s screen:

e The output after a blur, erosion, and first Canny edge operation
e The output after the above steps, a dilation, and the second Canny edge operation

e The output after the closed-contour detection, bounding box fitting, and bounding box fil-
tering

e The original image with classification labels on all segmented parts of the image

e The original image with blue boxes drawn around any segmented parts that were classified
as the target object

e The original image with a red box around the segmented part of the image that is the computer
after smoothing

Examples of these views are seen throughout the project. In addition to this pipeline, this
program is also responsible for broadcasting the position of the object in 3D space. To do so, once
the object is detected and passes our smoothing test, we query the Kinect to find the location of the
corresponding pixel in 3D space. From here, we use ROS’s transform (TF) library to publish this
position relative to the robot’s Kinect. This will allow us to later locate the object in a separate
ROS node when we want to move the robot’s end effector.

3.1.2 Robot Control

The second main program in this project is the robot node found in robot.cpp. This ROS node
is what is responsible for all control of the robot in response to our object recognition node. At
a high level, the node acts on a single loop. To begin, the node listens for the 3D position of the
object relative to the robot via ROS’s TF library that is being published from the node discussed
previously. If the position has moved at least a few centimeters in 3D space, then we calculate a
target point lcm away from the object. Finally, we make a request to the PR2’s inverse kinematics
services to move the robot’s end effector to our target position. Once there, we wait for a few
seconds before returning the arm to our pre-defined home position. Once again, we wait for a
change in the objects location before repeating the pointing action.

11

3.2 Code Documentation

In an effort to make the code reusable as both an example and a reference, we have published two
sets of documentation for the ROS community. For example, if a researcher wanted to modify the
package to recognize a new set of objects, these sets of documents would be extremely helpful.

The first set is a collection of helpful notes on how to download, compile (or simply install),
and run the code on an existing PR2 setup. This documentation can be found on the ROS wiki
site: http://www.ros.org/wiki/rail_cv_project.

Furthermore, the source code of the project contains detailed Doxygen comments. These
comments have been generated and posted on the ROS documentation website to provide in-
sight on how the code works for future developers. This documentation can be found at http:
//ros.org/doc/fuerte/api/rail_cv_project/html/.

3.3 Release & Packaging

In addition to the source code and adequate documentation, we have also run our code through
the official ROS release process. This process allows servers at Willow Garage to automatically
download, compile, and package our code as an Ubuntu package that can be distributed with
the default ROS repositories. By doing so, we allow researchers who are interested in trying out
our code to easily install on an Ubuntu machine with ROS installed via a single command: sudo
apt-get install ros—fuerte-rail-cv-project.

4 Conclusions & Future Work

Over the course of the project we designed and implemented an extendable system for object
recognition from 2D images. Given the modular architecture of our system and availability of the
source code, any stage of the classification pipeline could be changed by other researchers, e.g.
new features could be introduced or the classifier could be changed. Also, the target object of the
classification can be changed by providing additional training data. Furthermore, by integrating
our system with ROS, the image coordinates of the identified object’s position can be used in more
complex applications. We demonstrated such an application via the physical pointing functional-
ity. We consider our project successful with our demonstrated ability of having the PR2 reliably
accomplish the task.

We leave open to future work the possibility of improving aspects of the recognition system
itself. For example, we note the reliance on adequate lighting in our pipeline. Fluctuations in
lighting conditions negatively impact the classification accuracy. Current methods for correcting
such an issue are complex, such as computing the eigenvalues for the color representation in multiple
passes [3]. Also, the segmentation pipeline does not perform as well in high-clutter environments,
which could be improved by adjusting the segmentation process. Furthermore, we note that the
use case of the 3D location was merely an example of the possibilities this information could be
used for. Notable extensions include using the pipeline to help with grasp planning.

References Cited

[1] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679-698, June 1986.

12

http://www.ros.org/wiki/rail_cv_project
http://ros.org/doc/fuerte/api/rail_cv_project/html/
http://ros.org/doc/fuerte/api/rail_cv_project/html/

[2] Rich Caruana and Alexandru Niculescu-mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd international conference on Machine learning (ICML 06,
pages 161-168, 2006.

[3] Zhenyong Lin, Junxian Wang, and Kai-Kuang Ma. Using eigencolor normalization for
illumination-invariant color object recognition. Pattern Recognition, 35(11):2629 — 2642, 2002.

[4] Hu Ming-Kuei. Visual patern recognition by moment invariants. In IRE Transactions on
Information Theory, volume IT-8, pages 179-187, 1962.

[5] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

13

	Introduction
	Objectives

	Approach
	Image Segmentation
	Feature Vector Extraction
	Classification
	Training
	Multi-Object Recognition

	Smoothing & False Positive Reduction
	3D Space Transformation and Robot Pointing

	Implementation, Code Documentation, & Release
	Source Code
	Image Processing
	Robot Control

	Code Documentation
	Release & Packaging

	Conclusions & Future Work

