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Abstract—We present a novel robotic grasp controller that
allows a sensorized parallel jaw gripper to gently pick up and
set down unknown objects once a grasp location has been
selected. Our approach is inspired by the control scheme that
humans employ for such actions, which is known to centrally
depend on tactile sensation rather than vision or proprioception.
Our controller includes the six discrete states of Close, Load,
Lift and Hold, Replace, Unload, and Open. During all control
states, measurements from the gripper’s fingertip pressurearrays
and hand-mounted accelerometer are processed in real time to
generate robotic tactile signals that are designed to matchhuman
SA-I, FA-I, and FA-II channels. These signals are combined into
tactile event cues that drive the state transitions, enabling the
controller to select an appropriate initial grasping force, detect
when an object is slipping from the grasp, and judge when to
release an object to set it down. We demonstrate the promise of
our human-inspired approach to robotic grasp control through
implementation on the PR2 robotic platform, including grasp
testing on a large number of real-world objects.

Index Terms—robot grasping, tactile sensing

I. I NTRODUCTION

A S robots move into human environments, they will need
to know how to grasp and manipulate a very wide variety

of objects [1]. For example, some items may be soft and light,
such as a stuffed animal or an empty cardboard box, while
others may be hard and dense, such as a glass bottle or an
apple. After decidingwhere such objects should be grasped
(finger placement), the robot must also have a concept ofhow
to execute the grasp (finger forces and reactions to changes in
grasp state). A robot that operates in the real world must be
able to quickly grip a wide variety of objects firmly, without
dropping them, and delicately, without crushing them (Fig.1).

Non-contact sensors such as cameras and laser scanners are
essential for robots to recognize objects and plan where to
grasp them, e.g., [2], [3]. Similar sensing approaches could
also be used to anticipate the grasp force needed to safely
pick up an object, but it is impractical to store specific
information about all of the objects a robot may need to
handle. Furthermore, it is dangerous to rely on such a priori
models, since the grasp forces they recommend may be too
strong or too weak for a specific item. Instead, we and others
believe that robot grasp control should strongly rely on tactile
sensing – local time-varying information about the contact
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Fig. 1. The Willow Garage PR2 robot using our grasp controller to carefully
handle two sensitive everyday objects.

between the robot’s fingers and the object in question. Many
important events that can be challenging for other sensory
modalities to perceive, such as the slip of an object in the
fingers or a glancing collision between the held object and
an unseen obstacle, are easily detected using carefully crafted
tactile signals. Understanding contact using tactile information
and reacting in real time will be critical skills for robots to
successfully interact with real-world objects, just as they are
for humans.

A. Human Grasping

Neuroscientists have thoroughly studied the human talent
for grasping and manipulating objects. As recently reviewed
by Johansson and Flanagan [4], human manipulation makes
great use of tactile signals from several different types of
mechanoreceptors in the glabrous (non-hairy) skin of the hand,
with vision and proprioception providing information thatis
less essential. Johansson and Flanagan divide the seemingly
effortless action of picking up an object and setting it back
down into seven distinct states: reach, load, lift, hold, replace,
unload, and release. In the first phase, humans close their grasp
to establish finger contact with the object. Specifically, the
transition from reach to load is known to be detected through
the FA-I (Meissner) and FA-II (Pacinian) afferents, which
are stimulated by the initial fingertip contact. FA signifies
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that these mechanoreceptors are fast-adapting; they respond
primarily to changes in mechanical stimuli, having small and
large receptive fields, respectively. Once contact has been
detected, humans increase their grasp force to the target
level, using both pre-existing knowledge about the object
and tactile information gathered during the interaction. This
loading process is regulated largely by the response of the
SA-I (Merkel) afferents, which are slowly-adapting with small
receptive fields. The load phase ends when the target grasp
force is reached with a stable hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is
of critical importance to reject disturbances in the lifting and
holding phases, while object contact must be detected during
the replace stage to successfully transition to unloading.The
SA-I afferents are again important during unload to properly
set the object down before full release. These tactile sensing
capabilities and corrective reactions enable humans to adeptly
hold a very wide range of objects without crushing or dropping
them; indeed, humans typically apply a grip force that is only
10–40% more than the minimum amount needed to avoid
slippage [4], thereby achieving the dual goals of safety and
efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control

Inspired by the fluidity of human grasp control, this article
presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects once the fingertip contact
locations have been selected. We describe robotic sensing
methods that use finger-mounted pressure arrays and a hand-
mounted accelerometer to mimic the important tactile signals
provided by human FA-I, FA-II, and SA-I mechanoreceptors.
These three complementary sensory channels allow us to cre-
ate a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,

our controller is“centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task”[4]. As diagrammed in Fig. 2, our
approach separates robotic grasping into six discrete states:

• Close
• Load
• Lift and Hold
• Replace
• Unload
• Open

These states purposefully match those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical. Each state defines a
set of rules for controlling a robotic gripper to perform the
specified behavior based on the tactile sensations it experi-
ences. In addition to creating this human-inspired approach
to robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
Section VII.

II. BACKGROUND

The development of tactile sensors for robotic hands has
been a very active area of research, as reviewed by Cutkosky
et al. in 2008 [6]. Among the wide range of sensors one could
use, Dahiya et al. [7] present a strong case for the importance
of having tactile sensors capable of reproducing the rich
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Fig. 2. The state diagram for our human-inspired robotic grasp controller. State transitions occur only after specific tactile events are detected. The details
of this controller are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table IIin the Appendix.
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response of the human tactile sensing system. Along these
lines, some recent sensors have even achieved dynamic re-
sponse capabilities on par with the glabrous skin of the human
fingertip [8]. Using tactile sensory cues with wide dynamic
range as the trigger for robotic actions was first proposed by
Howe et al. over two decades ago [9]. Unfortunately, most
such sensors still exist only as research prototypes and are
not widely available. The pressure-sensing arrays used in our
work represent the state of the art in commercially available
tactile sensors, and they are available on all PR2 robots. High-
bandwidth acceleration sensing is far more established, though
such sensors are rarely included in robotic grippers.

In this work, we present a fully autonomous PR2 robot that
can perceive its environment, pick up objects from a table, and
set them back down in a new location. We build on the overall
system described in [10], focusing on methods for using tactile
feedback (pressure and acceleration) to improve the gripper’s
contact interactions with grasped objects. Prior versionsof this
system have used pre-defined grasp forces and were limited to
either crushing or dropping many objects; hence, our primary
goal is to enable two-fingered grasps that are gentle but secure.

Several other research groups have recently developed
autonomous pick-and-place robotic systems, such as [11]–
[13]. While these other works often use tactile sensing to
guide adjustments in hand position during the pre-grasp stage,
they rely mainly on pre-defined grasp forces or positions
and the mechanical compliance of their gripper in order to
hold objects. Such strategies do not work well for the high-
impedance parallel jaw grippers with which many robots are
equipped. In other previous work, Yussof et al. [14] showed
promising results using a custom-built tabletop manipulator
with custom optical fingertip sensors that measure normal and
shear forces. Takahashi et al. [15] calculated robot fingertip
slip information using a pressure array similar to that usedin
our system. However, neither of these systems has yet been
validated with a wide set of real-world objects, and we believe
there is room for new approaches to processing and responding
to tactile signals.

Another large but scattered body of work is devoted to
understanding fingertip sensor signals at and during contact,
e.g., [16]–[19]. Again, these algorithms are typically developed
with custom hardware and validated against only a small and
ideal set of objects, which makes it hard to draw conclusions
about their general utility. In some of our own previous work,
we found that sensor information such as slip [20] and contact
stiffness [21] is useful in well controlled situations but can can
be extremely susceptible to changes in object texture, sensor
orientation, and other such factors that will naturally vary
when implemented on a fully autonomous robot that needs
to interact with unknown objects in human environments.

This paper aims to develop robust tactile sensory signals
that will apply to as many objects as possible in order to
create a tactile-event-driven model for robotic grasp control.
Several researchers [7], [9] have noted the importance of such
an approach, but to our knowledge this is among the first large-
scale implementations of such methods in a fully autonomous
robot that has not been built for the sole purpose of grasping.

III. ROBOT EXPERIMENTAL SYSTEM

Robots have great potential to perform useful work in every-
day settings, such as cleaning up a messy room, preparing and
delivering orders at a restaurant, or setting up equipment for
an outdoor event [1]. Executing such complex tasks requires
hardware that is both capable and robust. Consequently, we use
the Willow Garage PR2 robotic platform. As shown in Fig. 1,
the PR2 is a human-sized robot designed for both navigation
and manipulation. It has an omni-directional wheeled base,
two seven-degree-of-freedom arms, and two one-degree-of-
freedom parallel-jaw grippers. Its extensive non-contactsensor
suite includes two stereo camera pairs, an LED pattern pro-
jector, a high-resolution camera, a camera on each forearm,a
head-mounted tilting laser range finder, a body-mounted fixed
laser range finder, and an IMU.

Figure 3 shows the parallel jaw gripper that is mounted
on each of the PR2’s arms. The gripper’s only actuator is a
brushless DC motor with a planetary gearbox and an encoder.
This motor’s rotary motion is converted to the parallel jaw
motion through a custom internal mechanism in the body of
the gripper. Unlike many of the robot hands currently being
developed for grasping, e.g., [11], [13], the PR2 gripper has a
high mechanical impedance due to the large gear ratio of the
actuation system; note that it can be slowly back-driven by
applying a large force at the fingertips. Motor output torque
can be specified in low-level software, but the transmission
does not include any torque or force sensors. Instead, motor
effort is estimated using current sensing; the transmission’s
significant friction prevents this signal from corresponding
well with the force that the gripper applies to an object during
grasping.

A high-bandwidth Bosch BMA150 digital accelerometer
is embedded in the palm of each gripper, as illustrated in
Figure 3. This tiny sensor measures triaxial acceleration over
a range of±78 m/s2 with a nominal resolution of0.15 m/s2.
The accelerometer has a sampling rate of3 kHz and a band-
width from DC to 1.5 kHz. Successive triaxial acceleration
measurements are grouped together in sets of three (nine total
values) and made available to the controller at a rate of1 kHz.

Each of the gripper’s two 2.3 cm× 3.7 cm × 1.1 cm
fingertips is equipped with a pressure sensor array consisting
of 22 individual cells. The22 cells are divided between a five
by three array on the parallel gripping surface itself, two sensor
elements on the end of the fingertip, two elements on each
side of the fingertip, and one on the back (see Fig. 3). These
capacitive sensors (manufactured by PPS Systems) measure
the perpendicular compressive force applied in each sensed
region, and they have a nominal resolution of6.25 mN. As
shown in Fig. 3, the entire sensing surface is covered by a
protective layer of silicone rubber that provides the fingertip
compliance and friction needed for successful grasping. All
pressure cells are sampled simultaneously at a rate of24.4 Hz.
Due to manufacturing imperfections and residual stresses in
the deformed rubber, each sensor cell has a unique non-
zero reading when the fingertips are subjected to zero force.
We compensate for this non-ideality by averaging the first
0.25 seconds of each cell’s pressure measurements before each
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Fig. 3. The PR2 robot gripper. The accelerometer is rigidly mounted to a
printed circuit board in the palm, and the pressure sensors are attached to the
robot’s fingertips under the silicone rubber coating.

grasp and subtracting this offset from subsequent readings.
We use the open-source ROS software system for all ex-

periments conducted with the PR2 robot. The implemented
gripper controllers are run inside a1 kHz soft-real-time
loop. Information from the tactile sensors (accelerometerand
pressure cells) is available directly in this environment,as is
the gripper’s encoder reading.

IV. L OW-LEVEL SIGNALS AND CONTROL

Individual sensor readings and actuator commands are far-
removed from the task of delicately picking up an object and
setting it back down on a table. Consequently, the high-level
grasp controller diagrammed in Fig. 2 rests on an essential
low-level processing layer that encompasses both sensing and
acting. Here, we describe the three tactile sensory signalsthat
we designed to match human SA-I, FA-I, and FA-II afferents,
along with the position and force controllers needed for the
gripper to move smoothly and interact gently with objects.

A. Fingertip Force (SA-I)

The SA-I tactile sensory channel is known to play a primary
role in the human hand’s sensitivity to steady-state and low-
frequency skin deformations up to∼5 Hz [4]. The cumulative
response of many SA-I nerve endings gives humans the ability
to both localize contact on the fingertip and discern the total
amount of force applied [22]. In humans, these receptors
populate the non-hairy skin of the finger with densities ranging
from 40 to 100 per cm2, with each neuron having a receptive
field of ∼2–4 mm2 [22].

The pressure arrays on the PR2 fingertips provide informa-
tion that is similar to human SA-I signals, though spatially
far less dense. A signal similar to the SA-I estimate of total
fingertip force can be obtained by summing the readings from
all fifteen elements in the pad of one finger on the gripper:

Fgl =
3∑

i=1

5∑

j=1

fl(i,j) (1)

The valuefl(i,j) represents the force acting on the left fin-
gerpad cell at locationi, j. The same procedure is used to
calculateFgr for the right finger usingfr(i,j). The mean grip
force is calculated by averaging the force experienced by the
two fingers,Fg = 1

2 (Fgl + Fgr). Figure 4 shows an example

of these fingertip force signals during object contact, along
with examples of the other tactile signals described below.

We also attempted to obtain localization information about
the fingertip contact using the methods described in [15],
but we were not able to achieve satisfactory results. We
hypothesize that differences in the fingertip shape (the PR2
has a flat fingertip that leads to multiple contact locations,as
opposed to the rounded fingertips used by Takahashi et al.),
and the lower number of tactile cells in our sensors were the
main reasons we were unable to achieve similar results.

B. Fingertip Force Disturbance (FA-I)

Human FA-I signals are believed to be the most important
indicator of force-disturbance events during bare-handedma-
nipulation. These force disturbances occur at many instants
including the initial object contact, object slippage, impacts
between a hand-held object and the environment, and the end
of object contact. FA-I afferents respond to skin deformations
in the 5–50 Hz frequency range [4]. The FA-I receptors
populate glabrous human skin with densities ranging from 70
to 140 per cm2, and each receptor has a receptive field of
∼3–5 mm2 [23].

We process the data from the PR2’s pressure arrays to
create a signal similar to the human FA-I channel. Our chosen
calculation is to sum a high-pass-filtered version of the forces
detected in all fifteen fingertip cells:

F̃gl(z) =
3∑

i=1

5∑

j=1

HF (z)fl(i,j)(z) (2)

The force measured in each cellfl(i,j) is subjected to a
discrete-time first-order Butterworth high-pass filterHF (z)
with a cutoff frequency of5 Hz, designed for the24.4 Hz
sampling rate of the pressure signals. The resulting filtered
signals are then summed to obtain an estimate of the> 5 Hz
force disturbances̃Fgl acting on the entire left fingerpad. The
process is repeated for the right finger to obtainF̃gr.

C. Hand Vibration (FA-II)

FA-II afferents are known to be the primary tactile channel
by which humans sense interactions between a handheld tool
and the items it is touching. During object grasping and ma-
nipulation, these receptors are particularly useful for detecting
contact between handheld objects and other things in the envi-
ronment, such as a table surface. The FA-II mechanoreceptors
respond to high-frequency vibrations in a range from 40 to
1000 Hz. They are relatively rare in the hand, and they have
a wide receptive field of at least 20 mm2 [22], [23].

We create a robotic analog to the FA-II sensory channel by
processing data from the PR2’s hand-mounted accelerometer,
as follows:

ãh(z) =
√

(Ha(z)ah,x)2 + (Ha(z)ah,y)2 + (Ha(z)ah,z)2

(3)
The hand vibration signal̃ah is calculated by taking the
magnitude of the high-pass-filtered three-dimensional accel-
eration vector. The filter applied to each of the three Cartesian
acceleration components (ah,x ah,y ah,z) is a discrete-time
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Fig. 4. Time history data for an interaction between the gripper and an Odwalla juice bottle. Controller states are marked with bars at the top, and important
signals (state transitions and tactile events) are indicated with arrows at the bottom.

first-order Butterworth high-pass filterHa(z) with a 50 Hz
cutoff frequency, designed for the3 kHz sampling rate of our
acceleration data stream.

D. Position and Force Control

In addition to the rich tactile sensations described above,
humans excel at manipulation because they can move compe-
tently through free space but quickly transition to regulating
grasp force during object contact [4]. Replicating the fluidity
of human grasping with a parallel jaw gripper thus requires
well designed position and force controllers. Both of these
controllers appear several times in the high-level state diagram
of Fig. 2; each controller block is labeled with its type, along
with the desired motion or force output.

The PR2 gripper is a geared mechanism, so it lends itself
well to position control. We define its positionxg in meters
and its velocityvg in meters per second. The position is zero
when the fingers touch and positive otherwise, so that the
position value corresponds to the grip aperture. The gripper
velocity follows the same sign as position, with positive values
indicating that the hand is opening. We found that we could
achieve good position tracking via a simple proportional-
derivative controller with an additional velocity-dependent
term to overcome friction:

E = KP · (xg − xg,des) + KD · (vg − vg,des)

−sign(vg,des) · EFRICTION (4)

Here,E is the motor effort (N), KP is the proportional error
gain (N/m), KD is the derivative error gain (Ns/m),andxg,des

and vg,des are the desired gripper position (m) and velocity
(m/s) respectively. EFRICTION is a scalar constant for feed-
forward friction compensation, applied to encourage motion
in the direction ofvg,des. Note that motor effort is defined to

be positive in the direction that closes the gripper, which is
opposite the sign convention for the motion variables. Table II
in the Appendix lists values and units for all of the constants
used in our controllers, including KP, KD, and EFRICTION.

We created a force controller on top of this position con-
troller to enable the PR2 to better interact with delicate objects.
This controller requires access to the fingertip force signals
Fg described above in Section IV-A. Forces that compress the
fingertips are defined to be positive, so that positive motor
effort has the tendency of creating positive fingertip forces.
As is commonly done, the force controller drives the desired
position and velocity terms based on the error between the
desired force and the actual force:

Fg,min = min (Fgl, Fgr) (5)

vg,des = KF · (Fg,min − Fg,des) (6)

KF =

{
KFCLOSE if Fg,min − Fg,des < 0,

KFOPEN otherwise
(7)

The force we servo the grasp on,Fg,min, is the smaller of the
two sensed fingertip forces (5), which helps to ensure that a
strong dual-finger contact is made with the object. Errors in
tracking the desired forceFg,des are multiplied by the constant
gain KF to yield the desired velocity for the position controller
(6). This desired velocity is integrated over time to provide
the position controller with a desired grip aperturexg,des.
Experimental testing revealed that high values of the gain
KF improved force tracking but also caused the commonly
encountered force-controller effect of chattering. We found
that an asymmetric gain definition (7), where KFCLOSE
is greater than KFOPEN, allows for the best balance of
stability and responsiveness during grasping. We believe this
asymmetry is most likely due to mechanical features of the
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gripper’s complex drive train, such as compliance, backlash,
and slight backdriveability.

V. ROBOTIC GRASPCONTROL

This section describes the high-level grasp controller we
developed to enable a robotic gripper to mimic the human
capacity for picking up and setting down objects without
crushing or dropping them. This control architecture is dia-
grammed in Fig. 2 and explained sequentially below. It makes
use of all three of the low-level tactile signals and both of the
low-level controllers defined in the previous section.

A. Close

Closing is the starting point for any grasp. In this phase
the hand goes from having no contact with the object to
contacting the object with both fingers. The Close state begins
when a client software module requests a grasp, denoted by
the Grasp() signal in Fig. 2. It is assumed that prior to this
request the gripper has been maneuvered so that its fingers are
on opposing sides of an object, approximately equidistant to
both surfaces, and that closing the gripper’s jaws will result in
stable two-fingered contact with the object. Selection of such
poses without requiring a model of the object is an ongoing
area of research, e.g., [3], [10], as is correcting for errors
in execution of the selected pose, e.g., [10], [13]. Here, we
assume a reasonable starting arm pose and focus solely on
controlling the gripper’s one degree of freedom.

After the Grasp() request has been received, we use the
position controller defined in (4) to close the gripper with a
constant desired velocityvg,des = −VCLOSE. This closing
movement continues until contact is detected on both the left
and right fingers, which we define as the logicaland of the
following two signals:

LeftContact = (Fgl > FLIMIT ) ‖ (F̃gl > DLIMIT )(8)

RightContact = (Fgr > FLIMIT ) ‖ (F̃gr > DLIMIT )(9)

Each fingertip force signal is compared with the constant
FLIMIT, and each fingertip force disturbance signal is com-
pared with the constant DLIMIT. Note that a finger’s contact
signal is true if the threshold on either itsFg or its F̃g has
been exceeded, and recall that the second of these signals
is merely a high-pass-filtered version of the first. Through
implementation on the PR2, we found that DLIMIT can be
much smaller than FLIMIT becausẽFgl is not sensitive to
the pressure cells’ low-frequency fluctuations; consequently,
the force disturbance condition is almost always first to
trigger a contact event. A sample instance of LeftContact &&
RightContact is indicated in Fig. 4.

While several groups [5], [9] have noted that higher fre-
quency vibrations are useful in detecting contact, we could
not find a reliable indication of such events in ourãh signal.
This difficulty is likely due to the specific hardware of the
PR2. A large distance separates the accelerometer from the
fingertips, and the compliant silicone fingertip coverings soften
impacts considerably. Furthermore, significant high-frequency
vibration noise occurs whenever the gripper motor is turning,
which masks out any small tactile cues that might occur (see

the ãh signal during the Close and Open phases in Fig. 4).
Fortunately, the tactile signals derived from the pressurecells
are very reliable at detecting the start of contact, providing a
consistent cue to transition to the Load phase.

B. Load

The goal of the Load phase is to apply a grip force that
is appropriate for the target object, so that the object can be
lifted and manipulation can begin. Selecting this grip force
level is challenging when the robot does not have a detailed
mechanical model of the object or prior experience in gripping
it. Consequently, we designed a novel method for choosing a
reasonable starting grasp force; many alternatives were tested,
and we report here only the most reliable one.

After contact is detected, the robot pauses for a short period
of time (TSETTLE) while trying to hold the position of the
first contactxc. This pause serves two purposes: first, many
objects take a short time to mechanically respond to the initial
contact, and second, the pressure sensor cells update at a
rate that is much slower than the controller rate (24.4 Hz
vs. 1000 Hz). We have found that the force response during
this contact settling time is a very useful indicator of how
hard an object should be grasped.Thus, the robot records the
maximum average force seen by the gripper fingers during this
time and calculates the target force to hold the object as:

Fc = max
t

(Fg) ·
KHARDNESS

VCLOSE
(10)

As one would expect, the force response of an object strongly
depends on the speed of the finger impact. We remove this
dependence on velocity by dividing the gain KHARDNESS
by VCLOSE, the speed at which the fingers are commanded
to impact the object. This approach enables the controller to
calculate a contact forceFc that is relatively independent of
the closing speed. At the end of the brief pause, the robot
transitions to force control, using the computedFc value as
the desired forceFg,des.

The force control mode continues until the gripper achieves
StableContact, which we define as:

StableContact = (|Fg,min − Fg,des| < FTHRESH)

&& (|vg| < VTHRESH) (11)

This condition requires that the smaller of the two fingertip
forces Fg,min be within the tolerance FTHRESH of the
command forceFg,des, and that the gripper speed be below
the tolerance VTHRESH. Through testing, we have found
that grasps become stable very quickly on most everyday
objects. Slower stabilizations occur with very hard objects,
which require additional effort after contact to ramp up the
steady-state force command, and extremely soft objects, which
need some time before the velocity settles to zero.

C. Lift and Hold

After StableContact is achieved, the controller transitions
to the next grasp phase: Lift and Hold. In this phase the
robot holds the object between its fingertips and moves its arm
to accomplish higher-level tasks. It is desirable for the grasp
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controller to hold the object firmly enough to avoid slipping,
but gently enough to avoid crushing. As with FA-I signals in
human grasping, the high-pass filtered force signalF̃g is a
strong indicator of slip. This signal is more reliable thanFg

itself, since it does not vary significantly with low-frequency
robot motion and reorientation of the object with respect to
gravity. We calculate the Slip condition as follows:

Slip =
(
|F̃g| > Fg · SLIPTHRESH

)

&&
(
FBP

g < FBPTHRESH
)

(12)

Our Slip condition is met only when both subsidiary sensory
comparisons evaluate to true. First, the magnitude of the force
disturbance signal̃Fg must exceed a threshold defined by the
product of the total forceFg and a constant SLIPTHRESH;
using this product rather than a constant value makes the robot
less sensitive to force variations as the grip force increases.
This approach was again inspired by human capabilities: hu-
man force perception is known to follow Weber’s Law, where
a stimulus must vary by a certain percent of its magnitude to
have the change be detectable [24].

Second, slips are considered only when the grasp force is
not slowly varying. We evaluate this force stability condition
by treating the average fingerpad forceFg with a first-order
Chebyshev discrete-time band-pass filter with a pass-band
from 1 to 5 Hz and comparing with the empirically tuned
constant FBPTHRESH. The lower frequency cutoff of 1 Hz
removes the mean value from the grip force signal, while the
higher cutoff of 5 Hz removes the slip effects that are seen in
F̃g. This condition prevents the formation of a feedback loop
when the controller increases its grip force to stop slip events,
as discussed below.

If Slip does occur, the controller increases the desired grip
force Fc by a small percentage of its current value, such that
Fc = Fc · KSLIP. Several alternative methods of responding
to slip were tested, such as increasing the desired grip force
proportional to the magnitude of the slip event, as done by
Takahashi et al. [15]. However, we found that our system does
not exhibit a strong correlation between the amount of slip (in
either speed or distance) and theF̃g signal; instead, this signal
depends somewhat on the properties of the grasped object, so
we use it to detect only that the grasp has been disturbed.

D. Replace

The transition from Lift and Hold to Replace occurs when
a client software module sends the Place() signal. The robot
should enter this mode only when it is ready to put the
held object down, which is typically after it has moved the
gripper to within a few centimeters of the desired placement
location. After issuing the Place() command, the higher-level
robot controller moves the gripper toward the target surface
at a moderate speed. During this time, the low-level force
controller hold the final target force from the previous phase,
Fc, and the Replace controller monitors the Slip and Vibration
signals to detect contact between the object and environment.
We define the Vibration condition as a threshold on the high-
frequency hand acceleration signal:

Vibration = (ãh > ATHRESH) (13)

When either Slip or Vibration becomes true, the robot assumes
that contact has occurred between the object and the target
surface, and it moves into the Unload phase.

It is necessary to observe both the Slip and Vibration
conditions to account for the variety of contact scenarios
that can occur. In the case of very light objects, which are
appropriately held lightly during the Lift and Hold phase, the
object slips between the robot’s fingers, so the hand does not
experience significant vibrations. In the case of heavy objects,
which are held firmly, no Slip signal is detected since the
object is held firmly enough to prevent slip, but the impact
vibrations are easily apparent in thẽah signal. For many
objects between these two extremes, both Slip and Vibration
conditions are often true at contact.

E. Unload

The Unload phase is entered automatically after the held
object contacts the target surface. The goal of this phase is
simply to let go, but our controller performs this unloading
gradually to avoid abrupt transitions. The desired grip force is
linearly reduced to zero over a set period of time using:

Fg,des = Fc − Fc

t − ts

TUNLOAD
(14)

Here,t represents the present time, andts represents the start-
ing time for the Unload state. TUNLOAD is a constant that
determines the unloading duration. The state is exited when
Fg,des reaches zero, which occurs whent−ts == TUNLOAD.

F. Open

Once the robot has released the object on the surface, it
proceeds to open the gripper. This movement is accomplished
by the position controller, using a constant positive desired
velocity of VOPEN.

VI. EXPERIMENTAL VALIDATION

We carried out focused experiments to test the performance
of the two most novel aspects of the robotic grasp controller
described in this paper: the grip force chosen during Load and
responses to Slip during Lift and Hold. To understand how our
approach compares to more simplistic grasping solutions, we
then conducted a more general test of the PR2’s capabilities
using a collection of fifty everyday household objects.

A. Grip Force Estimation During Loading

As described in Section V-B, the controller in the Load
phase selects the target grip force based on the maximum force
measured during the gripper’s initial contact with the object,
normalized by contact speed. We evaluated this technique
through grasp testing on eight different objects: a paper cup, a
paperboard tea box, a ripe banana, an empty soda can, a raw
chicken egg, a tennis ball, a glass bottle, and a full soda can.

We began the experiment by obtaining ground-truth mea-
surements of the minimum grip force necessary for the PR2 to
lift each object. These tests were done by placing each object
in a known location and orientation on a table. The robot then
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Fig. 5. The target grip force chosen by our Load method when grasping
eight everyday objects. The gain KHARDNESS was empiricallytuned to
yield a grip force (red bar) that is consistently above the minimum grip
force necessary to lift the object (blue bar). This calculation provides a
good estimate for a large range of objects, but one can see itstendency to
overestimate the force necessary to hold objects that are both hard and light,
such as the egg. The red× symbol marks the crushing force for all objects
that can be crushed by the robot gripper.

closed its gripper on the object using only the force controller
described in equations (5)–(7), with the desired forceFg,des

set to a small value (starting between 0.5 N and 6 N, depending
on the object.) The robot then used its arm joints to move the
gripper up by 10 cm. The experimenter visually monitored the
translational slip between the object and the gripper during the
lift. If more than 5 mm of slip occurred, the trial was repeated
with the grasp force incremented by 0.1 N. If the object did not
slip, the desired grip force was recorded as the minimum grip
force needed for lifting. This entire process was repeated eight
times per object. The blue “Minimum Force” bars in Fig. 5
show the mean and standard deviation of the eight ground
truth measurements for each of the eight objects.

The experiment was then repeated using the grasp controller
described in this paper. We performed eight trials with each
of the same eight objects, located in the same position and
orientation as before. For each trial, the desired loading force
Fc was recorded, as calculated with (10). The red “Grip Force”
bars in Fig. 5 show the mean and standard deviation of the
eight grip force levels that the robot chose during the Load
phase for each of the eight test objects.

Lastly, we determined the force necessary to crush each
object (if crushing was possible) by successively incrementing
the force controller’s desired grip force by 0.1 N until the ob-
ject began to deform significantly. Only a single recording was
done for the crushing force because this operation damages the
object. These crush force measurements appear as red X’s with
the other results in Fig. 5. In all cases, our controller chose a
grip force above the minimum level needed to avoid slip. For
crushable objects, it chose grip forces well below the crush
limit for all objects except the egg, which it crushed in three
of the eight trials. Subsequent informal testing revealed that a
slight reduction in the KHARDNESS gain allows the system
to pick up eggs without crushing them, as demonstrated in the
movie that accompanies this paper.
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Fig. 6. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

B. Slip Response During Lift and Hold

We conducted a separate experiment to test slip compensa-
tion in the Lift and Hold phase. As described in Section V-C,
Lift and Hold uses the force controller to try to maintain a
constant target grasp force; it watches for Slip events, which
are derived from the pressure transducer data, and it responds
by increasing the target grasp force by a small percentage.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 6. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 6.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
more than 5 mm after two seconds of shaking, the trial was
repeated with a grasp force incremented by 0.1 N. The grasp
force needed to hold the cup at each of the six weights is
shown by the red dashed “Minimum Grip Force” line in Fig. 6.
One can see that this value increases up to an object weight
of about 2.5 N and then levels off at approximately 8.3 N.
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Fig. 7. The 50 objects used in our robustness test. These objects were
chosen for no specific reason except that they have a wide range of properties
including; hard/soft, heavy/light, sticky/slippery, brittle/elastic.

The controller always chose a grip force value above the
level needed to prevent slip, which helps validate our human-
inspired approach to gripping unknown objects. The variation
between the three trials is primarily due to differences in
how the experimenter shook the gripper; stronger external
disturbances cause more corrective actions and higher grip
force levels.

C. Grasping Robustness

Beyond testing specific aspects of our controller’s perfor-
mance, we wanted to understand how the methods proposed
in this paper would work on their intended subject, everyday
real-world objects. We thus gathered the collection of 50
common objects shown in Fig. 7, purposefully seeking out
items that could be challenging for a robot to grasp. The only
requirement on these objects is that they are all within the
robot’s perception and manipulation capabilities (not toolarge
to grasp, not too heavy to pick up, etc.). The objects included
in the collection are as follows: apple, banana (rotten), Band-
Aid box, beer bottle (empty), beer bottle (full), can of Spam,
can of peas, candle, cereal box (empty), Coffee-mate bottle,
duct tape roll, foam ball, gum container, Jello cup, juice box,
large plastic bowl, magic marker, masking tape roll, medicine
bottle, milk carton (empty), office tape dispenser (heavy),
ointment tube (full), peach (soft), plastic juice bottle (empty),
plastic juice bottle (full), plum (rotten), rubber football, Solo
plastic cup, Saran wrap box, ShiKai shampoo bottle (empty),
small wooden bowl, soap bottle (empty), soap box (full), soda
can (empty), soda can (full), soup can (full), stress ball, stuffed
bear, stuffed elephant, Suave shampoo bottle (empty), sun-
glasses case, tea box (metal), tea box (paperboard), tennisball,
thin plastic cup, Tide bottle (full), towel, Vasoline container
(full), water bottle (empty), and wood plank.

The robot’s task for this experiment was to pick up each
object from a table and set it down in a different location.
We used the object perception and motion planning code
of Hsiao et al. to enable the PR2 to accomplish this task
autonomously [10]. Starting object poses on the table were
hand-chosen to ensure grasp feasibility, and the grasp selection
and reactive grasping components of [10] were used to set up
stable grasps, with the object centered within the grasp before
starting, as per our assumptions for the Close phase. After
grasping the object, the robot lifted the object off the table,

TABLE I
OUTCOMES OF GRASP TESTING WITH FIFTY EVERYDAY OBJECTS.

100% Motor Effort Our Methods

Crushed 100% 3.3%
Rotated Within Grasp 10% 18%
Slipped Within Grasp 4% 8%

Dropped 4% 8%

then moved it from above the table to the side of the robot,
so that the arm would not interfere with perception for object
placement. The object was then moved to the opposite side
of the table for placement. This motion was planned using a
randomized joint-angle planner and typically involved a great
deal of object rotation, as is typical of many complex pick-
and-place operations. During such motions, the robot would
ideally prevent the object from rotating or slipping out of the
grasp, while continuing to avoid crushing the object.

Each object was tested under two grasp control conditions.
The first condition was the original manipulation code de-
scribed in [10], which takes a naive approach by always clos-
ing the gripper with 100% motor effort. The second condition
was a portion of the human-inspired robotic grasp controller
described in this paper, which included our Close, Load, and
Lift and Hold phases. Unfortunately, our Replace, Unload, and
Open phases could not be included in this experiment due
to code integration difficulties. Our controller was testedfirst
because the naive controller tends to damage crushable objects.

During testing, the experimenter presented the objects to the
robot one by one and manually recorded the outcome of each
trial. As tabulated in Table I, four different types of errors
occurred: the robot might crush a crushable object (30 of
the 50 objects were crushable), it might let the object rotate
significantly within its grasp (more than∼10◦), it might let
the object slip significantly within its grasp (more than∼3 cm
translation), and it might drop the object either by failingto
raise it off the table at the start of the Lift and Hold phase, or
by allowing it to slip from its grasp later in Lift and Hold.

The naive controller was found to crush all thirty of the
crushable objects, while our controller crushed only one (the
rubber football). This drastic improvement in handling delicate
objects is balanced by a higher incidence of objects that rotate,
slip, and/or drop; our controller commits all three of these
errors about twice as often as the naive controller. The two
most challenging items were the rubber football and the full
Tide bottle; both controllers allowed them to slip within the
grasp and fall on the table. This was due to the large size
of both objects: the football was larger than the maximum
gripper diameter, and the Tide bottle was within 1 cm of the
maximum diameter.

Quantitative data was also recorded for our controller’s
grasp of each of the 50 objects. Fig. 8 presents a histogram of
the grip force chosen during the Load phase for the 49 objects
that were successfully lifted. These values range from 2.5 N
to 27.5 N with most objects below 7.5 N. The objects with
the lowest initial grasp force were the towel, the Coffee-mate
bottle, the large plastic bowl, and the stress ball, in ascending
order. The objects with the highest initial grasp force were
the wood plank, the duct tape roll, and the sunglasses case,
in descending order. From this we observe that soft objects
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generally receive lower initial grip forces than hard objects,
as one would expect from the design of our controller.

Fig. 9 provides a histogram of the average motor effort
required during Lift and Hold for the 46 objects that were not
dropped. One can quickly see that our controller is much more
efficient than the naive controller, which always uses 100%
motor effort. Because the PR2 gripper has high friction in its
mechanism and also has compliant fingertips, it can securely
hold objects such as the foam ball and the Band-Aid box with
zero motor effort. At the other end of the spectrum, the wood
plank, the duct tape roll, and the full beer bottle all had an
average motor effort of 100%.

VII. C ONCLUSION

This article introduced a set of sensory signals and control
approaches that we hope will help to standardize future
approaches to robotic grasping by virtue of their demonstrated
usefulness, biologically-inspired origins, and simplicity. We
presented a framework that highlights how tactile feedback
can be used as a primary means of completing a manipulation
task, with encouraging results. While it is clear to the authors
that not all tasks can completed solely via tactile information,
we feel that it is a promising and underutilized tool in mobile
manipulation systems.

In future work we hope to add additional sensing modalities
into our object handling framework, including estimates ofthe
necessary object grip force from visual and laser recognition,
audio feedback about crushing and damaging objects, weight
sensing after an object has been lifted off the table, grasp
disturbance prediction from arm motion data, and grasp quality
information based on the fingerpad contacts. Our current
estimation of the initial grip force necessary to lift an object is
solely dependent on the hardness information gleaned during
contact. While it has shown to be a strong indicator for many
everyday objects, it does have certain failure cases where

TABLE II
VALUES CHOSEN FOR CONTROLLER CONSTANTS

ATHRESH 4.2 m/s2 KHARDNESS 0.027 m/s
*DLIMIT 0.02 N *KP 20,000 N/m

*EFRICTION 7.0 N KSLIP 1.08
FBPTHRESH 0.25 N SLIPTHRESH 0.01

*FLIMIT 0.75 N *TSETTLE 0.05 s
FTHRESH 0.15 N TUNLOAD 0.20 s

*KD 5,000 Ns/m VCLOSE 0.04 m/s
*KFCLOSE 0.0013 m/Ns VOPEN 0.05 m/s

*KFOPEN 0.0008 m/Ns *VTHRESH 0.001 m/s

hardness information is deceptive, such as soft but heavy
objects (e.g., a heavy trash bag or stuffed animal), and light
but hard objects (e.g., an egg or thin wine glass). We believe
that supplementing this information with additional object data
will lead to a superior grip force estimator.

Our signal for detecting slip information was successful, but
the force response to slip events could be improved by using
a gripper with superior dynamic response. The PR2 gripper
is admittedly inferior to several of the compliant and well-
modeled designs existing in the literature; we hypothesizethat
these methods would be even more successful if implemented
with these alternative research systems. Furthermore, Taka-
hashi et al. [15] have shown that it is possible to obtain useful
centroid-of-contact information with spherical fingertips. This
is a feature we were unable to reproduce with the PR2’s flat
fingertips, but we may attempt to redesign the fingertip shape
in the future if it proves highly beneficial. The addition of
shear-force sensing capabilities to the fingertip may also prove
an important indicator of slip information, and it is a close
parallel to an important mechanoreceptor of the hand we do
not discuss, the SA-II channel, which detects skin stretch.

As we continue to refine this system and increase the range
of objects it can handle, all relevant code is freely available
at https://code.ros.org/.

APPENDIX

CONTROLLER CONSTANTS

To facilitate a generic presentation of our grasp controller,
the mathematical constants used in this paper are designated
with an all-capitalized naming convention. Table II shows
the values and units that our controller actually employs for
these constants. The * symbol indicates values that are robot
specific.
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