

Motoplus-ROS Incremental
Motion interface

Engineering Design
Specifications

DOCUMENT NO: M2092-EDS
DOCUMENT VER.: 2.0.0
DATE: 10/18/2023

Distribution is subject to copyright.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 ii

Disclaimers

The information contained in this document is the proprietary and exclusive property of
Yaskawa Motoman Robotics except as otherwise indicated. No part of this document, in
whole or in part, may be reproduced, stored, transmitted, or used for design purposes
without the prior written permission of Yaskawa Motoman Robotics.

The information contained in this document is subject to change without notice.

The information in this document is provided for informational purposes only. Yaskawa
Motoman Robotics specifically disclaims all warranties, express or limited, including, but not
limited, to the implied warranties of merchantability and fitness for a particular purpose,
except as provided for in a separate software license agreement.

Privacy Information

This document may contain information of a sensitive nature. This information should not be
given to persons other than those who are involved in the Spatial Vision project or who will
become involved during the lifecycle

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 iii

History

 Revisions and Reviews

Version Person(s) Description Date

1.0.0 Tom Moolayil Original version 11/01/2011

2.0.0 Eric Marcil Updated functionality added over time 10/18/2023

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 iv

Document Approval

Motoman:

Yaskawa America, Inc.
Motoman Robotics Division
100 Automation Way
Miamisburg, OH 45342
937-847-6200

Customer:

Company Name
Address
City, State, Zip
Phone

Approvals:

Name Title Organization/Dept.

1

2

3

4

5

6

Signature Date

1

2

3

4

5

6

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 v

Table of Contents

1 Overview ... 1

1.1 Current System Issues ... Error! Bookmark not defined.

1.2 Scope ... 1

1.3 Objectives .. 1

2 Specifications ... 2

2.1 Architecture .. 2

2.1.1 ROS to Motoplus .. 3

2.1.2 Motoplus to ROS .. 3

2.1.3 INFORM to Motoplus.. 3

2.2 Communication Sequence/Flow .. 4

2.3 Message and Data ... 11

2.3.1 Controller Class Data ... 11

2.3.2 ROS to MotoPlus .. 12

2.3.3 MotoPlus to ROS .. 13

2.3.4 Increment Move Queue .. 13

2.3.5 MotoPlus to Controller .. 13

2.4 Interpolation of Pulse Increment .. 15

2.4.1 Constant for a specific controller .. 15

2.4.2 Variables ... 15

2.4.3 Algorithm .. 16

2.4.4 Calculation .. 17

2.4.5 Check speed and acceleration ... 18

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 vi

Index of Figures

Figure 1: System Architecture .. 2

Figure 2: Start-up Sequence ... 4

Figure 3: Monitoring Task Sequence .. 5

Figure 4: Receive ROS Move – Initialization Sequence ... 6

Figure 5: Receive ROS Move – First Point Sequence ... 7

Figure 6: Receive ROS Move – Next Point Sequence ... 8

Figure 7: Receive ROS Move – Other Sequence .. 9

Figure 8: Send Incremental Move Task Sequence .. 10

 Index of Table

Table 1: .. Error! Bookmark not defined.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 1

1 Overview

The ROS-Industrial program, initiated by Southwest Research Institute (SwRI), enables new
applications and reduces project costs for industrial robotics. ROS-Industrial leverages the
advanced capabilities of the Robot Operating System (ROS) software for powerful new
industrial applications. This platform is usually used to calculate possible robot IK solutions
by creating a virtual world identical to that of the real robot and using the obstacle/work
space information to plan an optimal path to perform a task.

ROS industrial calculates a path and streams the way points to the MotoRos, MotoPlus
application) running on the Yaskawa controller. The MotoRos application creates pulse
increments that are sent to the controller command position to move the robot along the
received path.

1.1 Scope

Yaskawa electric has released a new function that allows sending incremental motion at high
rate. This new function should allow moving the robot without speed limitation. The
implementation will require that:

1. The creation of a Motoplus application running on the controller (DX100, DX200, FS100,
YRC1000 or YRC1000micro) to receive raw streaming data from the ROS side and use
these streaming way points to execute the trajectory using the mpMeiIncrementMove
function.

2. The ROS side needs to be changed to accommodate speed data along with the way-
points. The current message type used in ROS comprises only of the trajectory points.

1.2 Objectives

The overall objectives of this project are:

1. To enable the robot to execute externally generated trajectories at full speed and
smoothing as is appropriate during the course of executing any trajectory.

2. To create a Motoplus application that used the mpMeiIncrementMove or mpExRcsIncre-
mentMove function in the algorithm .

3. To change the communication interface of ROS to incorporate velocity data along with
way-points.

4. To implement restrictions on the incoming data from the PC to enforce safety and pre-
vent damage to the robot.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 2

2 Specifications

2.1 Architecture

Figure 1: System Architecture

PC (Linux)

FS100 Controller

ROS

Define a path for the robot:

ROS Industrial

Decompose path into smaller control points
with joint positions, time and end flag:

T0

T1

T2 T3

T4 T5

T6

MotoPlus (MotoROS)

- Initialize MotoROS by retrieving the controller/manipulator data
- Enable the incremental move function through I/O handshake.
- Run task receiving the ROS industrial
motion and breaks it down to increments
matching the controller’s interpolation clock.
- Run task synchronized with the controller interpolation clock that sends
the incremental motion instruction (mpExRcsIncrementMove)

Controller Software

Execute job to enable the incremental move function.
Move the robot according the received incremental move.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 3

2.1.1 ROS to Motoplus
ROS-Industrial is responsible for generating the way-points and sending them to the robot
controller. ROS will internally generate the way points and velocity information and send it
via TCP/IP to the controller to interpret and use them as it sees fit.

2.1.2 Motoplus to ROS
Once Motoplus receives a point, it sends an acknowledgment to the ROS side to let it know it
has received the way point and it is ready to receive subsequent points. This is the main
communication that will happen between Motoplus to ROS.

Other communication will be to report the state of the system, current position, and extra
services (such as reading or writing specific I/O, setting the active tool…)

2.1.3 INFORM to Motoplus
There is an inform job, INIT_ROS, which must be running on the controller to enable it to re-
ceive motion commands from the Motoplus application. It doesn’t need to have any motion
commands. The mpExRcsIncrementMove command only works when the output #889 is ON
and the cursor is on a WAIT command. The INFORM job will look as follows:

NOP
DOUT OT#(890) OFF
DOUT OT#(889) OFF
TIMER T=0.05
DOUT OT#(889) ON
WAIT OT#(890)=ON
DOUT OT#(890) OFF
END

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 4

2.2 Communication Sequence/Flow

ROS
ROS

Industrial
MotoROS:
Main Task Controller

Start ROS

Load Nodes Start ROS
Industrial

Connect to
controller

Retrieve
Controller Data
(Manipulator
parameter)

Power Up
Controller

Start MotoPlus
Application

Initialize
MotoROS

All.prm file

Wait for
connection

Start Tasks

Wait Output
#889=ON

MotoROS:
StateServer
(Monitoring
Position and
system state)

MotoROS:
MotionServer
(Receive ROS

Move)

Figure 2: Start-up Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 5

Figure 3: Monitoring Task Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 6

ROS
ROS

Industrial

MotoROS:
Receive ROS

Move

Wait for motion
packet

Generate
trajectory

Move the
robot

Send Motion
Header

Wait motion
acknowledge

Send success
Acknowledge

Is RosMove
shared flag
Enabled?

No

Yes

Start ROS Job:
Status, Remote,
Hold, Select Job,
ServoOn, Start

MotoROS:
Main Task Controller

 INIT_ROS.JBI
NOP
DOUT
OT#(890) OFF

DOUT
OT#(889) OFF

TIMER T=0.05

DOUT
OT#(889) ON

WAIT
OT#(890)=ON

DOUT
OT#(890) OFF

END

Wait OUT#889

Process
SKILLSND

“ROS_ENABLE”
message

Wait RosMove
shared flag

enabled

Start Task:
Send Inc. Move

Clear IncMove
Shared Queue

Set shared flag:
RosMove

Enable

Figure 4: Receive ROS Move – Initialization Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 7

Figure 5: Receive ROS Move – First Point Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 8

Generate
incremental

move for each
interpolation

clock segment

Populate inc
move queue

Monitor inc
move queue

level and wait
until ready for

more move

Inc. Move
Queue

ROS
Industrial

MotoROS:
Receive ROS

Move

Send next
point

Wait for motion
packet

Is RosMove
shared flag
Enabled?

No

Abort Motion

Send failure
acknowledge

Wait motion
acknowledge

Send success
Acknowledge

MotoROS:
Shared Inc.

Move Queue

Figure 6: Receive ROS Move – Next Point Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 9

Figure 7: Receive ROS Move – Other Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 10

MotoROS
Inc Move

Queue

Inc. Move
Queue

MotoROS

Check Inc. Move
Queue

Apply the inc.
move to the

next
interpolation

segment
Wait for next
interpolation

clock
announcement

If moves are in
queue send the

next move

Controller

Interpolation
clock

announcement

Figure 8: Send Incremental Move Task Sequence

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 11

2.3 Message and Data

2.3.1 Controller Class Data

In the initialization phase of the MotoROS library, the controller class is instantiated and
caches all the values from the parameter extraction library for later use within the increment
move function. Following are the functions (along with dummy input variables) that are called
currently:

GP_isPflEnabled()

GP_getInterpolationPeriod(): Get the interpolation period in milliseconds.

GP_getNumberOfGroups(): Retrieves the Number of Defined Groups

For each group:

GP_getNumberOfAxes (ctrl_grp): Retrieves the number of axes of the group.

GP_getAxisMotionType: Gets the motion type of each axis in the group

GP_getPulseToRad(int ctrlGrp, PULSE_TO_RAD *PulseToRad): Retrieves the pulse to
radian conversion factors for each axis.

GP_getAxisMotionType(int ctrlGrp, AXIS_MOTION_TYPE* axisType): Gets the Pulse to
meter conversion factors

GP_getFBPulseCorrection(int ctrlGrp, FB_PULSE_CORRECTION_DATA *correctionData):
Retrieves the feedback pulse corrections for coupled motor axes.

GP_getMaxIncPerIpCycle(int ctrlGrp, int interpolationPeriodInMilliseconds,
MAX_INCREMENT_INFO *mip): Get the maximum pulse increment per interpolation cycle.

GP_getFeedbackSpeedMRegisterAddresses(int ctrlGrp, BOOL bActivateIfNotEnabled,
BOOL bForceRebootAfterActivation, JOINT_FEEDBACK_SPEED_ADDRESSES*
registerAddresses): Obtains the MRegister CIO addresses that contain the feedback speed
for each axis. Optionally enables this feature if not already enabled.

GP_isBaxisSlave(int ctrlGrp, BOOL* bBaxisIsSlave): Determines if B axis is automatically
moved relative to other axes.

GP_isSdaRobot(BOOL* bIsSda): Determines if the robot is a dual-arm SDA.

GP_isSharedBaseAxis(BOOL* bIsSharedBaseAxis): Determines if the robot is an SDA that
has a base axis which is shared over multiple control groups.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 12

Below is an example of the list of parameters which will be cached when the controller cache
is initialized:

S_PULSE_TO_RAD = 82239.523438
L_PULSE_TO_RAD = 74502.703125
U_PULSE_TO_RAD = 78879.734375
R_PULSE_TO_RAD = 32594.931641
B_PULSE_TO_RAD = 47206.453125
T_PULSE_TO_RAD = 24382.703125
E_PULSE_TO_RAD = 0.000000

Interpolation cycle millisec = 4

S MaxInc = 1263
L MaxInc = 1040
U MaxInc = 1211
R MaxInc = 932
B MaxInc = 1351
T MaxInc = 1038

MAIN Percentage of maximum speed = 0.500000

2.3.2 ROS to MotoPlus

2.3.2.1 Message type 1: JOINT_TRAJ_HEADER

Details

2.3.2.2 Message type 14: JOINT_TRAJ_PT

The message called JOINT_TRAJ_PT type which includes position, velocity, acceleration,
and time is designated as type 14. Once the Motoplus side received this message, it
executed the callback for this type.

This contains the following information:

- sequence: TYPE: industrial::shared_types::shared_int (4 bytes)

Value of -2 indicates START_TRAJECTORY_STREAMING which tells the MotoPlus
side that ROS is going to start sending points

Value of -3 indicates END_TRAJECTORY implying last point,

Value of -4 indicates STOP_TRAJECTORY to stop motion

Values of 0 or greater indicate actual sequence or the incoming point (0 indicates
start point, 1 indicates the first point, 2 indicates second etc.)

- positions: TYPE: industrial::joint_data (40 bytes): contains joint configuration in radians

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 13

- velocities: TYPE: industrial::joint_data (40 bytes): contains velocity in radians/sec

- accelerations: TYPE: industrial::joint_data (40 bytes): contains acceleration in
radians/sec/sec

- time_from_start: TYPE: industrial::shared_types::shared_real (4 bytes) : float containing
time in seconds

The industrial::joint_data type is of size 40bytes and has a member “joints” which is an array
that will contain 8 points (8 is the maximum number of axes) of 4 bytes each (8x4 = 32bytes)
(There are delimiters after each point of size 1byte(8x1 = 8bytes)) . The underlying type of all
of the above is “float”.

2.3.3 MotoPlus to ROS

2.3.3.1 Acknowledge message

Motoplus sends an acknowledgement each time it receives a point indicating it has received
the point and is ready for the next. This is mainly for timing and coordination purposes.

Each time a new point comes in the motion interface is triggered and the joint information is
moved to a buffer(using an addPoint function). Once the point is moved to a buffer and the
motion has been executed Motoplus sends back a “joint acknowledgment” to the ROS side
after receiving which ROS sends in the next point.

The joint acknowledgement type will be in the following formats:

ReplyTypes::SUCCESS – Received point and executed!!

ReplyTypes::FAILURE – Motoplus doesn’t recognize the incoming message type.

ReplyTypes::INVALID – The data is not in the correct format e.g point has 5 joint values but
the robot is 6 axes.

2.3.4 Increment Move Queue

2.3.5 MotoPlus to Controller

The MotoPlus application will send the incremental move using the function:
mpExRcsIncrementMove(MP_POS_DATA *src_p)

Typedef struct {
CTRLG_T ctrl_grp; // control group
CTRLG_T m_ctrl_grp; // master control group (coordinated motion)

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 14

CTRLG_T s_ctrl_grp; // slave control group (coordinated motion)
MP_GRP_POS_INFO grp_pos_info[MP_GRP_NUM]; // see structure detail
} MP_POS_DATA;

For a single arm system R1:

ctrl_grp = 1
m_ctrl_grp = 0
s_ctrl_grp = 0

Typedef struct {
MP_POS_TAG pos_tag; // see structure detail
long pos[MP_GRP_AXES_NUM]; // position information
} MP_GRP_POS_INFO

Typedef struct {
UCHAR data[8]; // defines the axes, tool and user frame used
CTRLG_T ei_ctrl_grp; // used only with EIMOV to set the control group
} MP_POS_TAG

MP_POS_TAG defines the axes, tool and user frame used.
MP_POS_TAG.data[0]: is for the axis used. This is a bitwise value with the first bit
corresponding to the first axis and the 8th bit to the 8th axis. So for:

6-axis robot: pos_tag.data[0]=63
7-axis robot: pos_tag.data[0]=127.

MP_POS_TAG.data[2]: defines the tool file number
MP_POS_TAG.data[3]: defines the coordinate system.

In our case, it should be set to MP_INC_PULSE_DTYPE
MP_POS_TAG.data[4]: defines the user frame number

MP_GRP_POS_INFO.pos[MP_GRP_AXES_NUM] define the pulse increment for each axis.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 15

2.4 Interpolation of Pulse Increment

The MotoROS will receive trajectory points from the ROS Industrial. The trajectory points
will include sequence number, time stamp, position (absolute), velocity and acceleration for
each joint using angular radians units. The points maybe spread along a path at different
spacing or time interval. The MotoRos application will need to interpolate the path between
those points and determine the corresponding incremental move to send to the controller at
the controller set interpolation cycle. The following are the calculation to be implemented for
this interpolation.

2.4.1 Constant for a specific controller

InterpolationCycle: Controller interpolation cycle time. (Usually 4 ms)

NbAxis: Number of axes (joints) on the manipulator.

RadToPulse[NbAxis]: Conversion ratio from radian to pulses for each axis.

MaxSpeedPulse[NbAxis]: Maximum rated speed in pulses/InterpolationCycle for each axis.

MaxAccelPulse[NbAxis]: Maximum rated acceleration in pulses/InterpolationCycle2 for each
axis.

2.4.2 Variables

nextInterCycleInc: The amount of time that should be added to the calculation time

calculationTime: Time elapse since the beginning of the motion

prevRosPoint[NbAxis]: Previous ROS control point (includes position, velocity, acceleration,
time)

newRosPoint[NbAxis]: New ROS control point (includes position, velocity, acceleration, time)

prevInterPoint[NbAxis]: Previous interpolated position in pulses (includes position and time).

newInterPoint[NbAxis]: New interpolated position in pulses (includes position and time).

prevIncPulse[NbAxis]: New pulse increment for the next interpolation cycle (includes
increment pulse, time increment, time)

newIncPulse[NbAxis]: New pulse increment for the next interpolation cycle (includes
increment pulse, time increment, time)

interAccel[NbAxis]: Linear interpolation of acceleration at a given time.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 16

2.4.3 Algorithm

For each new ROS point:

Calculate acceleration ratio

While time is smaller than new ROS point time

Increment calculation time by next interpolation cycle

If next interpolation cycle is smaller than the controller interpolation cycle, make it
equal.

If calculation time is smaller than new ROS point time

Set new time to calculation time

For each axis

Calculate new acceleration for the current calculation time

Calculate new velocity for the current calculation time

Calculate new position for the current calculation time

Else (if calculation time is equal or larger than new ROS point time)

If calculation time is larger than new ROS point time

Set the next interpolation increment to the different between the two

Set the calculation time equal to the new ROS point time

Set new time to new ROS point time

For each axis

Set new acceleration to new ROS point acceleration

Set new velocity to new ROS point velocity

Set new position to new ROS point position

Convert new position in pulses

Calculate new pulse increment by subtracting previous pulse position from new pulse
position.

Check speed and acceleration limits

Set new pulse increment to queue

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 17

2.4.4 Calculation

Acceleration ratio:

AccelRatio[i] = (newRosPoint.accel[i] - prevRosPoint.accel[i])
/ (newRosPoint.time - prevRosPoint.time)

New time:

newInterPoint.time = calculationTime

New time increment:

newInterPoint.IncTime = newInterPoint.time - prevInterPoint.time

New acceleration:

newInterPoint.accel[i] = prevRosPoint.accel[i]
+ AccelRatio[i] * (newInterPoint.time - prevRosPoint.Time)

New velocity:

newInterPoint.speed[i] = prevInterPoint.speed[i]
+ prevRosPoint.accel[i] * newInterPoint.IncTime

New position:

newInterPoint.speed[i] = prevInterPoint.position[i]
+ prevRosPoint.speed[i] * newInterPoint.IncTime
+ prevRosPoint.accel[i] * newInterPoint.IncTime^2 / 2

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 18

2.4.5 Check speed and acceleration

Check for each axis:

Speed:

MaxSpeedPulse[i] =

If abs(newIncPulse[i]) > MaxSpeedPulse generate error

Acceleration:

MaxAccelPulse[i] =

If abs(newIncPulse[i] - prevIncPulse[i]) > MaxAccelPulse generate error

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 19

2.5 FSU Speed Limit handling

Note: This is currently under development under the PR#542 on Github.

2.5.1 Overview

The FSU (Functional Safety Unit) works independently from the controller, therefore all FSU
function will work properly whether MotoRos is used or not. The issue is that when
activated, there is no explicit feedback to ROS. In the case that alarms are generated by the
FSU, the ROS side will be notified of the alarm state like any other alarm. The alarm will
need to be reset, and motion reinitialized from the current position.

The issue is when function like Speed Limit is enabled, any motion sent by ROS at speed
higher than the speed limit will be reduce, this will affect the robot motion and the robot will
not reach it’s expected end position. The problem is that there is no feedback available at
this time from the FSU to indicate that the motion was dynamically reduced that can be used
to relay the information to the ROS side.

To work around this issue, the MotoRos driver checks if the incremental pulses sent on the
previous iteration matches the change in the robot command position. If it doesn't it means
that the FSU Speed Limit is actively limiting the speed and rejecting some of the command.

By keeping track of the previous iteration values, the amount of increment processed is
calculated and the unprocessed part is resent. When there are unprocessed pulses, the
reading of the incremental queue is limited to one and then skip further reading until the
previous increment is completely processed.

The speed associated with an increment is also tracked so that if the speed limit is removed,
the unprocessed pulses won’t be sent all at once and exceed the commanded speed.

2.5.2 Calculations

The FSU Speed Limit handling is done in the Ros_MotionServer_IncMoveLoopStart at every
iteration cycle.

Motion Processing Condition

Originally when the increment queue was empty, the processing would be skipped motion
processing would be skipped, but when the FSU Speed Limit is enabled, pulse increments
from the previous iteration might not have been accepted by the controller and need to be
resent. So, the hasUnprocessedData flag was added to the condition to continue motion
processing until all data is processed even if the increment queue is empty.

Reading the Increment Queue

During the reading of the increment queue, we also added a flag, skipReadingQ, to skip

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 20

reading more data from the increment queue. Otherwise, when the FSU Speed Limit is
enabled, the unprocessed data would just keep in accumulate into a large value, gradually
merging all the data together and the motion path would no longer be matching the intended
path sent by ROS. So, whenever the amount of unprocessed pulses is larger than the
maximum amount of pulses that can be on the next iteration (MaxSpeed), the skipReadingQ
is set to true.

FSU Speed Limit Check

Note that processing is always considering all the axes of a group together. So, for a motion
increment to be considered processed, the motion of all axes in that group must be
complete. If any of the axes have unprocessed pulses, then the whole increment is
considered unprocessed. There are several steps in this section.

 Record the motion speed sent by ROS as the maxSpeed, pulses per iteration
(usually 4 ms). If there is a large number of unprocessed pulses and the FSU speed
limit is suddenly disabled, if all the unprocessed data is sent at once, it might create a
speed burst that would exceed the speed originally commanded by ROS. So, the
maxSpeed is tracked and the driver will never send number of pulses exceeding this
maxSpeed. The speed may also vary through a trajectory, so we also track for how
many pulses should this maxSpeed be applied. This is stored in the associated
variable maxSpeedRemain, which tracks for how many more pulses should that
maxSpeed be applied.

 Check if pulses are missing from last iteration increment. To do this, the current
controller command position is retrieved and the previous command position
substract from it to get the processedPulses amount. If it doesn’t match the amount
of increment sent on the previous iteration, then some pulses are missing, and the
number of unprocessed pulses needs to be added to this iteration toProcessPulses.
If a new pulse increment was also read from the queue on this iteration, it is also
added to the toProcessPulses variable.

 If there are missing pulses, isMissingPulse flag, then the FSU speed limit is active,
and the management of those unprocessed pulses is needed.

o As mentioned before, to prevent going faster than ROS requested speed, we
track the maxSpeed and maxSpeedRemain. This is done for a maximum of
two queue increments at the time, the previous (prev prefix) and the current
one. The processedPulses are removed from the prevMaxSpeedRemain.
When the prevMaxSpeedRemain gets to zero, it means that all the pulses for
that increment was processed, the current increment is then transferred to
the previous increment variables and a new increment can be retrieved from
the increment queue. Otherwise, if the prevMaxSpeedRemain is greater
than zero, the skipReadingQ flag is set to true.

o The number of pulses to be sent for the current iteration is then determined
based on the minimum between the toProcessPulses variable and the
prevMaxSpeed. The pulse value is then set to the moveData structure that
will be sent to the controller in the following step.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 21

Send pulse increment to the controller

The moveData structure is sent to the controller and the return value is retrieved. If non-
zero, the return value is analyzed to determine the cause and set user feedback.

Clean-up

If the Motion Processing is not taking place for whatever reason (alarm, mode change…) the
Ros_MotionServer_IncMoveLoopStart function internal variables are reset to make sure that
once processing is resumed there are no remaining values from the previous motion.

2.5.3 Example

This is an example of the motion processing while the FSU Speed Limit is enabled.

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 22

MotoPlus-ROS Incremental Motion Interface – EDS ver.2.0.0
 23

